CCS Technical Documentation RH-42 Series Transceivers

System Module

Contents

	Page No
Abbreviations	
Transceiver RH-42 (2220)	
Introduction	
Operational Modes	
Environmental Specifications	
Normal and extreme voltages	
Temperature Conditions	
Engine Module	
Baseband Module	
UEM	
Introduction to UEM	
Regulators	
RF Interface	
Charging Control	
Digital Interface	
Audio Codec	
UI Drivers	
AD Converters	
UPP	
Introduction	
Blocks	
Flash Memory	
Introduction	
User Interface Hardware	
LCD	
Introduction	
Interface	
Keyboard	
Introduction	
Power Key	
Keys	
Lights	
Introduction	
Interfaces	
Technical Information	
Audio HW	
Earpiece	
Introduction	
Microphone	17
Introduction	
Buzzer	
Introduction	
Battery	
Phone Battery	
Introduction	
Interface	
Battery Connector	

Battery Connector Interface	19
Accessories Interface	19
System connector	19
Introduction	19
Interface	19
Technical Information	
PPH-1 Handsfree	
Introduction	
Interface	
Charger IF	21
Introduction	
Interface	
Test Interfaces	
Production Test Pattern	
Other Test Points	
EMC	
General	
BB Component and Control IO Line Protection	
Keyboard lines	
C-Cover	
PWB	
LCD	
Microphone	
EARP	
Buzzer	
System Connector Lines	
Battery Connector Lines	
MBUS and FBUS	
Transceiver Interfaces	
BB - RF Interface Connections	
BB - RF Internace Connections	
UPP Block Signals	
Memory Block Interfaces	
Audio Interfaces	
Key/Display blocks	
Keyboard Interface Display Interface	
RF Module	
Requirements	
•	
Design	
Software Compensations	
Main Technical Characteristics	
RF Frequency Plan	
DC Characteristics	
Power Distribution Diagram	
Regulators	
AMPS/TDMA 800 MHz Front End	46

Frequency Synthesizers	46
Transmitter	47
Common IF	47
Cellular Band	47
Power Control	47
Antenna Circuit	48
RF Performance	48
Antenna	48

Abbreviations

ACCH	Analog Control Channel
A/D	Analog to Digital conversion
AMPS	Advanced Mobile Phone System
ANSI	American National Standards Institute
ASIC	Application Specific Integrated Circuit
AVCH	Analog Voice Channel
BB	Base Band
CSD	Circuit Switched Data
CSP	Chipped Scale Package. The same as uBGA.
CTIA	Cellular Telecommunications Industry Association
D/A	Digital to Analog conversion
DCCH	Digital Control Channel
DSP	Digital Signal Processing
DTCH	Digital Traffic Channel
EFR	Enhanced Full Rate (codec)
FCC	Federal Communications Commission
IrDA	Infrared Data Association
IrMC	Infrared Mobile Communications
IrOBEX	IrDA Object Exchange Protocol
IS	Interim Standard
ISA	Intelligent Software Architecture
LCD	Liquid Crystal Display
LED	Light Emitting Diode

MO/MTMobile Originated/Mobile Terminated (SMS)

- OOR Out Of Range (mode)
- OTA Over The Air (+ service like Programming etc.)
- PC Personal Computer (PC Suite = PC program for phone memory function support)
- PWB Printed Wired Board
- PWM Pulse Width Modulation
- RF Radio Frequency
- SAR Specific Absorption Rate
- SCF Software Component Factory
- SMD Surface Mount Device
- SMS Short Message Service
- SPR Standard Product Requirement
- TDD Text Device for the Deaf
- TDMA Time Division Multiple Access. Here: US digital cellular system.
- TIA Telecommunications Industry Association
- TTY Teletype
- UEM Universal Energy Management, a Baseband ASIC.
- UPP Universal Phone Processor, a Baseband ASIC.
- VCTCXOVoltage Controlled temperature Compensated Crystal Oscillator
- WAP Wireless Application Protocol (Browser)

Transceiver RH-42 (2220)

Introduction

The RH-42 is a single band transceiver unit designed for TDMA800 networks. The transceiver consists of the engine module (ST6S_11) and the various assembly parts.

The transceiver has a full graphic display and the user interface is based on a Jack style UI with two soft keys. An internal antenna is used in the phone, and there is no connection to an external antenna. The transceiver also has a low leakage tolerant earpiece and an omnidirectional microphone that provides excellent audio quality.

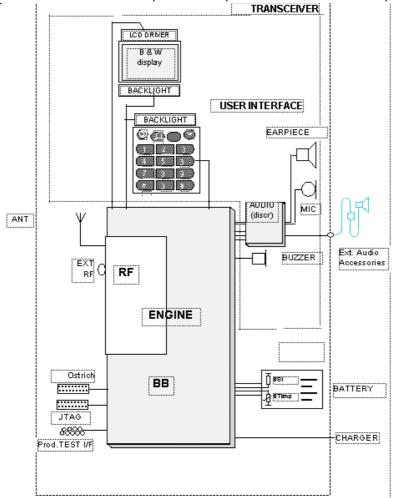


Figure 1: Interconnecting Diagram

Operational Modes

Below is a list of the phone's different operational modes:

- 1 Power Off mode
- 2 Normal Mode (Power controlled by cellular SW, includes various Active and Idle states):
- Analog Modes (800 MHz only):
 - •Analog Control Channel, ACCH
 - •Analog Voice Channel, AVCH
- Digital Mode (800 MHz):
 - •Control Channel, DCCH
 - Digital Voice Channel, DTCH (Digital Traffic Channel)
 - •Digital Data Channel, DDCH

Both the analog and digital modes have different states controlled by the Cellular SW. Some examples are Idle State (on ACCH), Camping (on DCCH), Scanning, Conversation, NSPS (No Service Power Save, previously OOR = Out of Range).

- 3 Local mode (both Cellular SW and UI SW non active)
- 4 Test mode (Cellular SW active but UI SW non active)

Environmental Specifications

Normal and extreme voltages

Voltage range:

- nominal battery voltage: 3.6 V
- maximum battery voltage: 5.0 V
- minimum battery voltage: 3.1 V

Temperature Conditions

Temperature range:

- ambient temperature: -30...+ 60 °C
- PWB temperature: -30...+85 °C

• storage temperature range: -40 to + 85 °C

All of the EIA/TIA-136-270A requirements are not exactly specified over the temperature range. For example, the RX sensitivity requirement is 3dB lower over the -30 - +60 °C range.

Engine Module

Baseband Module

The core part of the transceiver's baseband (see the figure below) consists of two ASICs - the UEM and UPP - and flash memory. The following sections illustrate and explain these parts in detail.

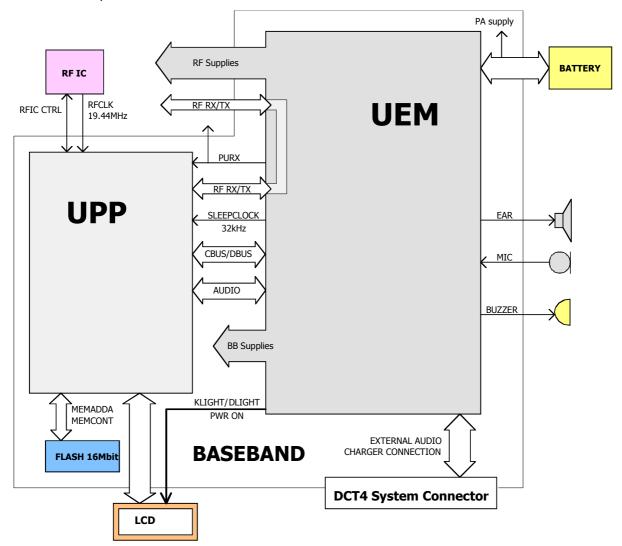


Figure 2: System Block Diagram

UEM

Introduction to UEM

UEM is the Universal Energy Management IC for digital hand portable phones. In addition to energy management, it performs all the baseband's mixed-signal functions.

Most UEM pins have 2kV ESD protection, and those signals considered to be more easily exposed to ESD, have 8kV protection within the UEM. These kinds of signals are (1) all audio signals, (2) headset signals, (3) BSI, (4) Btemp, (5) Fbus, and (6) Mbus signals.

Regulators

The UEM has six regulators for baseband power supplies and seven regulators for RF power supplies. The VR1 regulator has two outputs: (1) VR1a and (2) VR1b. In addition to these, there are two current generators — IPA1 and IPA2 — for biasing purposes.

A bypass capacitor (1uF) is required for each regulator output to ensure stability.

Reference voltages for regulators require external 1uF capacitors. Vref25RF is the reference voltage for the VR2 regulator, Vref25BB is the reference voltage for the VANA, VFLASH1, VFLASH2, VR1 regulators, Vref278 is the reference voltage for the VR3, VR4, VR5, VR6, VR7 regulators, and VrefRF01 is the reference voltage for the VIO, VCORE regulators and for the radio frequency (RF).

ВВ	RF	Current
VANA: 2.78Vtyp 80mA max	VR1a:4.75V 10mA max VR1b:4.75V	IPA1: 0-5mA
Vflash1: 2.78Vtyp 70mA max		IPA2: 0-5mA
Vflash2: 2.78Vtyp 40mA max	VR2:2.78V 100mA max	
VIO: 1.8Vtyp 150mA max	VR4: 2.78V 50mA max	
Vcore: 1.0-1.8V 200mA max	VR5: 2.78V 50mA max	
	VR6: 2.78V 50mA max	
	VR7: 2.78V 45mA max	

The **VANA** regulator supplies the baseband's (BB) internal and external analog circuitry. It is disabled in the *Sleep* mode.

The **Vflash1** regulator supplies the LCD, the digital parts of the UEM and Taco ASIC. It is enabled during startup and goes into the *low lq-mode* when in the *Sleep* mode.

The **VIO** regulator supplies both the external and internal logic circuitries. It is used by the LCD, flash and UPP. The regulator goes into the *low lq-mode* when in the *Sleep* mode.

The **VCORE** regulator supplies the DSP and the core part of the UPP. The voltage is programmable and the startup default is 1.5V. The regulator goes into the *low lq-mode* when in the *Sleep* mode.

The **VR1** regulator uses two LDOs (VR1A and VR1B) and a charge pump. The charge pump requires one external 1uF capacitor in the Vpump pin and a 220nF flying capacitor between the CCP and CCN pins. In practice, the 220nF flying capacitor is formed by 2 x 100nF capacitors that are parallel to each other. The VR1A regulator is used by the Taco RF ASIC.

The **VR2** regulator is used to supply the (1) external RF parts, (2) lower band up converter, (3) TX power detector module, and (4) Taco. In light load situations, the VR2 regulator can be set to the *low lq-mode*.

The **VR3** regulator supplies the VCTCXO and Taco in the RF. It is always enabled when the UEM is active. When the UEM is in the *Sleep* mode, the VR3 is disabled.

The VR4 regulator supplies the RX frontends (LNA and RX mixers).

The **VR5** regulator supplies the lower band PA. In light load situations, the VR5 regulator can be set to the *low lq-mode*.

The **VR6** regulator supplies the higher band PA and TX amplifier. In light load situations, the VR6 regulator can be set to the *low lq-mode*.

The **VR7** regulator supplies the VCO and Taco. In light load situations, the VR7 regulator can be set to the *low lq-mode*.

The **IPA1** and **IPA2** are programmable current generators. A $27\Omega/1\%/100$ ppm external resistor is used to improve the accuracy of the output current. The IPA1 is used by the lower PA band and IPA2 is used by the higher PA band.

RF Interface

The interface between the baseband and the RF section is also handled by the UEM. It provides A/D and D/A conversion of the in-phase and quadrature receive and transmit signal paths. It also provides A/D and D/A conversions of received and transmitted audio signals to and from the UI section. The UEM supplies the analog AFC signal to the RF section, according to the UPP DSP digital control.

Charging Control

The CHACON block of the UEM asics controls charging. The needed functions for the charging controls are the (1) pwm-controlled battery charging switch, (2) charger-monitoring circuitry, (3) battery voltage monitoring circuitry, and (4) RTC supply circuitry for backup battery charging (Not used in RH-42). In addition to these, external components are needed for EMC protection of the charger input to the baseband module.

Digital Interface

Data transmission between the UEM and the UPP is implemented using two serial con-

nections, DBUS (programmable clock) for DSP and CBUS (1.0MHz GSM and 1.08MHz TDMA) for MCU. The UEM is a dual voltage circuit: the digital parts are run from 1.8V and the analog parts are run from 2.78V. The Vbat (3,6V) voltage regulators's input is also used.

Audio Codec

The baseband supports two external microphone input areas and one external earphone output. The input can be taken from an internal microphone, a headset microphone or from an external microphone signal source through a headset connector. The output for the internal earpiece is a dual-ended type output, and the differential output is capable of driving 4Vpp to the earpiece with a 60 dB minimum signal as the total distortion ratio. The input and output signal source selection and gain control is performed inside the UEM Asic, according to the control messages from the UPP.

UI Drivers

There is a single output driver for the buzzer, display, and keyboard LEDs inside the UEM. These generate PWM square wave for the various devices.

AD Converters

The UEM is equipped with an 11-channel analog-to-digital converter. Some AD converter channels (LS, KEYB1-2) are not used in RH-42. The AD converters are calibrated in the production line.

UPP

Introduction

RH-42 uses the UPPv4M ASIC. The RAM size is 4M. The processor architecture consists of both the DSP and the MCU processors.

Blocks

The UPP is internally partitioned into two main parts: (1) the Brain and (2) the Body.

1 **The Processor and Memory System** (that is, the Processor cores, Mega-cells, internal memories, peripherals and external memory interface) is known as the **Brain**.

The Brain consists of the following blocks: (1) the DSP Subsystem (DSPSS), (2) the MCU Subsystem (MCUSS), (3) the emulation control EMUCtl, (4) the program/ data RAM PDRAM, and (5) the Brain Peripherals-subsystem (BrainPer).

2 The NMP custom cellular logic functions are known as the Body.

The Body contains interfaces and functions needed for interfacing other baseband and RF parts. The body consists of, for example, the following sub-blocks: (1) MFI, (2) SCU, (3) CTSI, (4) RxModem, (5) AccIF, (6) UIF, (7) Coder, (8) BodyIF, and (9) PUP.

Flash Memory

Introduction

The RH-42 transceiver uses a 16-Mbit flash as its external memory. The VIO regulator is used as a power supply for normal in-system operation. An accelerated program/erase operation can be obtained by supplying Vpp of 12 volt to the flash device.

The device has two read modes: *asynchronous* and *burst*. The burst read mode is utilized in RH-42, except for the start-up, when the asynchronous read mode is used for a short time.

User Interface Hardware

LCD

Introduction

RH-42 uses a black-and-white GD46 84x48 full dot matrix graphical display. The LCD module includes the LCD glass, the LCD COG-driver, an elastomer connector, and a metal frame. The LCD module is included in the lightguide assembly module.

Interface

The LCD is controlled by the UI SW and the control signals are from the UPP ASIC. The VIO and Vflash1 regulators supply the LCD with power.

The LCD has an internal voltage booster and a booster capacitor is required between Vout and GND.

Pin 3 (Vss9) is the LCD driver's ground and Pin 9 (GND) is used to ground the metal frame.

Keyboard

Introduction

The RH-42 keyboard style follows the Nokia Jack style, without side keys for volume control. The PWR key is located at the top of the phone.

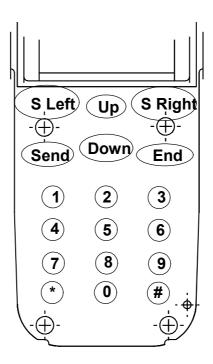


Figure 3: Placement of keys

Power Key

All signals for the keyboard come from the UPP ASIC, except PWRONX line for the power key signal which is connected directly to the UEM. The pressing of the PWR key grounds the PWRONX line and the UEM generates an interrupt to UOO, which is then recognized as a PWR key press.

Keys

Other keys are detected so that when a key is pressed down, the metal dome connects one S-line and one R-line of the UPP together and creates an interrupt for the SW. This kind of detection is also known as *metaldome detection*. The matrix of how lines are connected and which lines are used for different keys is described in the following table. The S-line SO and R-line R5 are not used at all.

Returns / Scans	SO	S1	S2	S3	S4
RO	NC	NC	Send	End	NC
R1	NC	Soft left	Up	Down	Soft right
R2	NC	1	4	7	*
R3	NC	2	5	8	0
R4	NC	3	6	9	#
R5	NC	NC	NC	NC	NC

where NC = Not Connected

NOKIA

CCS Technical Documentation

Lights

Introduction

RH-42 has has blue LEDs for lighting purposes. The LED type is blue-light emitting and SMD through-hole mounted.

Interfaces

The display lights are controlled by a Dlight signal from the UEM. The Dlight output is the PWM signal, which is used to control the average current going through the LEDs. When the battery voltage changes, the new PWM value is written onto the PWM register. In this way, the brightness of the lights remains the same with all battery voltages within range. The frequency of the signal is fixed at 128 Hz.

The keyboard lights are controlled by the Klight signal from the UEM. The Klight output is also a PWM signal and is used in the same way as Dlight.

Technical Information

Each LED requires a hole in the PWB, in which the body of the LED locates in hole and terminals are soldered on the component side of the module PWB. The LEDs have a white plastic body around the diode, and this directs the emitted light better to the UI side. The current for the LCD and keyboard lights is limited by the resistor between the Vbatt and LEDs.

Audio HW

Earpiece

Introduction

The speaker is a dynamic one. It is very sensitive and capable of producing relatively high sound pressure also at low frequencies. The speaker capsule and the mechanics around it together make the earpiece.

Microphone

Introduction

The microphone is an electret microphone with an omnidirectional polar pattern. It consists of an electrically polarized membrane and a metal electrode which form a capacitor. Air pressure changes (for example, sound) moves the membrane, which causes voltage changes across the capacitor. Because the capacitance is typically 2 pF, a FET buffer is needed inside the microphone capsule for the signal generated by the capacitor. Because of the FET, the microphone needs a bias voltage.

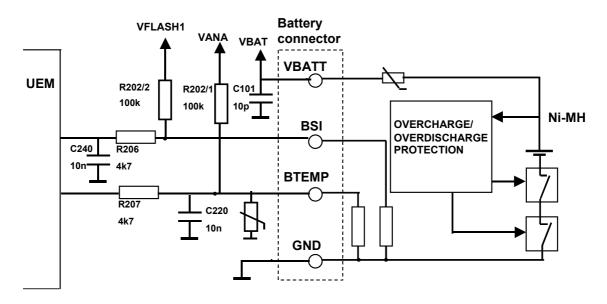
Buzzer

Introduction

The operating principle of the buzzer is magnetic. The diaphragm of the buzzer is made

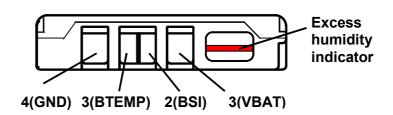
of magnetic material and it is located in a magnetic field created by a permanent magnet. The winding is not attached to the diaphragm, as is the case with the speaker. The winding is located in the magnetic circuit so that it can alter the magnetic field of the permanent magnet, thus changing the magnetic force affecting the diaphragm. The buzzer's useful frequency range is approximately from 2 kHz to 5 kHz.

Battery


Phone Battery

Introduction

The BMC-3 battery (Ni-MH 900mAh) is be used in the RH-42 transceiver by default. It is also possible to use the BLC-2 (Li-ion 950mA) battery.


Interface

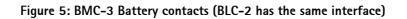

The battery block contains NTC and BSI resistors for temperature measurement and battery identification. The BSI fixed resistor value indicates the chemistry and default capacity of a battery. The NTC-resistor measures the battery temperature. Temperature and capacity information is needed for charge control. These resistors are connected to BSI and BTEMP pins of the battery connector. The phone has pull-up resistors for these lines so that they can be read by A/D inputs in the phone (see the figure below). Serial resistors in the BSI and BTEMP lines are for ESD protection. Both lines also have spark caps to prevent ESD. There is also a varistor in the BTEMP line for ESD protection.

Figure 4: Battery Connection Diagram

The batteries have a specific red line, which indicates if the battery has been subjected to excess humidity (red line spreads). The batteries are delivered in the *protection* mode, which gives longer storage time. The voltage seen in the outer terminals is zero (or float-ing), and the battery is activated by connecting the charger. The battery has internal protection for overvoltage and overcurrent.

Battery Connector

RH-42 uses the spring-type battery connector. This makes the phone easier to assemble in production and the connection between the battery and the PWB is more reliable.

Battery Connector Interface

#	Signal name	Connected	from – to	Batt. I/ O	Signal properti A/Dlevelsfi	Description / Notes	
1	VBAT	(+) (batt.)	VBAT	I/O	Vbat	3.0-5.1V	Battery voltage
2	BSI	BSI (batt.)	UEM	Out	Ana		Battery size indicator
3	BTEMP	BTEMP (batt.)	UEM	Out	Ana	40mA/Switch 400mA	Battery temper- ature indicator
4	GND	GND	GND	GND	GND		Ground

Accessories Interface


System connector

Introduction

RH-42 uses accessories via a system connector.

Interface

The interface is supported by fully differential 4-wire (XMICN, XMICP, XEARN, and XEARP) accessories. RH-42 supports the HDE-2 inbox headset, HDB-5 Boom headset, HDC-5 headset, LPS-3 loopset, and the PPH-1 car kit.

Figure 6: System Connector

An accessory is detected by the HeadInt- line, which is connected to the XEARP inside the system connector. When an accessory is connected, it disconnects XEARP from HEADINT, and the UEM detects it and generates an interrupt (UEMINT) to the MCU. After that, the HOOKINT line is used to determine which accessory is connected. This is done by the voltage divider, which consists of the phone's internal pull-up and accessory-specific pull-down. The voltage generated by this divider is then read by the ad- converter of UEM. The HOOKINT- interrupt is generated by the button in the headset or by the accessory external audio input.

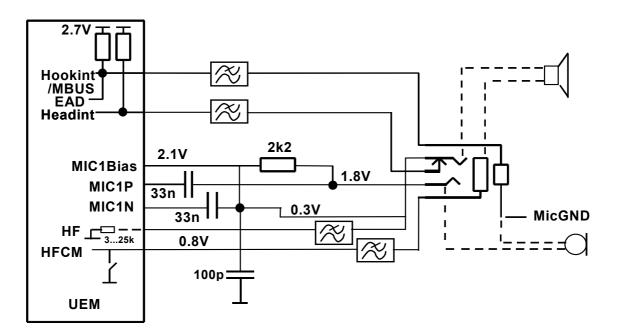
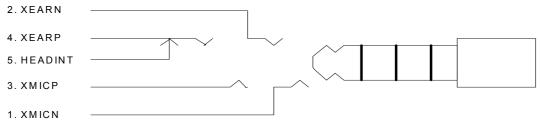


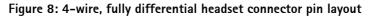
Figure 7: Accessory Detection / External Audio

Technical Information

ESD protection is made up by (1) spark caps, (2) a buried capacitor (Z152 and Z154-157), and (3) \pm 8kV inside the UEM The RF and BB noises are prevented by inductors.

PPH-1 Handsfree


Introduction


The PPH-1 handsfree device

- provides the charging and handsfree functionality,
- has a built-in speaker, and
- uses a phone microphone, but also has a connector for the HFM-8 optional external microphone (using HFM-8 mutes phone microphone).

Interface

A 4-wire interface is implemented with 2.5 mm diameter round plug/jack which is otherwise like a so-called standard stereo plug, but the innermost contact is split into two.

Charger IF

Introduction

The charger connection is implemented through the system connector. The system connector supports charging with both plug chargers and desktop stand chargers.

There are three signals for charging. The charger GND pin is used for both desktop and plug chargers as well as for charger voltage. The PWM control line, which is needed for 3-wire chargers, is connected directly to the GND in the PWB module, so the RH-42 engine does not provide any PWM control for chargers. Charging controlling is done inside the UEM by switching the UEM's internal charger switch on and off.

Interface

The fuse (F100) protects the phone from too-high currents; for example, when broken or pirate chargers are used. L100 protects the engine from RF noises, which may occur in the charging cable. V100 protects the UEM ASIC from reverse-polarity charging voltage and from too-high charging voltages. C106 is also used for ESD and EMC protection. Spark gaps right after the charger plug are used for ESD protection.

Test Interfaces

Production Test Pattern

The interface for RH-42 production testing is a 5-pin pad layout in the BB area (see the following figure). The production tester connects to these pads by using spring connectors. The interface includes the MBUS, FBUSRX, FBUSTX, VPP, and GND signals. The pad size is 1.7 mm. The same pads are used also for AS test equipment, such as the module jig and the service cable.

Figure 9: Top View of Production Test Pattern

Other Test Points

As BB asics and flash memory are CSP components, the visibility of BB signals is very poor. This makes the measuring of most of the BB signals impossible. In order to debug the BB, at least to some level, the most important signals can be accessed from the 0.6 mm test points. The figure below shows the test points located between the UEM and the UPP. There is an opening in the baseband shield to provide access to these pads.

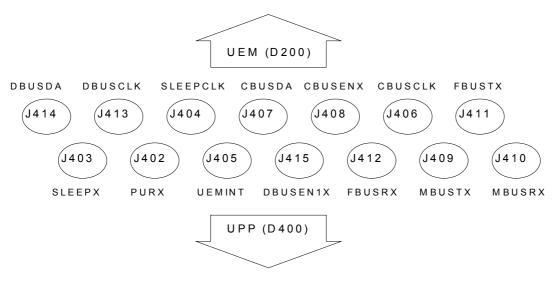


Figure 10: Test points located between UEM and UPP

EMC

General

The EMC/ESD performance of RH-42's baseband is improved by using a shield to cover the main components of the BB, such as the UEM, UPP, and Flash. The UEM has internal protection against a \pm 8kV ESD pulse in most sensitive pins and \pm 2kV in other pins. The BB shield is soldered to the PWB and it also increases the rigidity of the PWB in the BB area, thus improving the phone's reliability. The shield also improves the thermal dissipation by spreading the heat more widely.

The BB and RF shield are connected together on the PWB and the protective metal deck underneath the battery is grounded to RF shield.

BB Component and Control IO Line Protection

Keyboard lines

ESD protection for keyboard signals is implemented by using separate EMI filter component located between keyboard and UPP. EMI component is a low-pass filter with ± 15 kV ESD protection. Also the distance from A-cover to PWB is made longer with the spikes in the keymat together with C-cover metallization is protecting keyboard lines.

C-Cover

The C-cover on the UI side is metallized on the inner surface (partly) and is grounded. All areas in which the plated C-cover touches the PWB surface are grounded and the solder masks are opened.

PWB

All edges are grounded on both sides of the PWB and the solder mask is opened in these areas. The aim is that any ESD pulse faces the ground area first when entering the phone, for example, between the mechanics covers.

LCD

ESD protection for LCD is implemented by connecting the metal frame of the LCD into ground. The connection is only on one side, at the top of the LCD, which is not the best solution. The software takes care of the LCD's crashing in case of an ESD pulse.

Microphone

The microphone's metal cover is connected to the GND and there are spark gaps on the PWB. The microphone is an asymmetrical circuit, which makes it well protected against EMC.

EARP

The EARP is protected with C-cover metallization and with a plastic-fronted earpiece.

Buzzer

PWB openings with the C-cover metallization protect the buzzer from ESD.

Page 23

System Connector Lines

	System Cor	System Connector signals that have EMC protection										
Protection type	VIN	XMIXP	XMICN	XEARP	XEARN	HEADINT	MICP					
ferrite bead (600 /199MHz)		Х	Х	Х	Х		Х					
ferrite bead (420 /100MHz)	Х											
spark gaps		Х	Х	Х	Х	Х	Х					
PWB capacitors		Х	Х	Х	Х	Х	Х					
RC-circuit			Х	Х	Х	Х	Х					
capacitor to ground	Х	х	Х	Х	Х							

Battery Connector Lines

BSI and BTEMP lines are protected by spark gaps and the RC circuit (4k7 and 10n), in which the resistors are size 0603.

MBUS and FBUS

The opening in the protective metal deck, underneath the battery, is so small that ESD does not get into the MBUS and FBUS lines in the production test pattern.

Transceiver Interfaces

The tables in the following sections illustrate the signals between the various transceiver blocks.

BB - RF Interface Connections

The BB and RF parts are connected together without a physical connector.

All the signal descriptions and properties in the following tables are valid only for active signals, and the signals are not necessarily present all the time.

Note: In the following tables, the nominal signal level of 2.78V is sometimes referred to as 2.7V.

Rip #	Signal Name DAMPS, GSM1900	Connected from to			BB Signal Properties I/O A/DLevelsFreq./ Timing resolution		elsFreq./	Description / Notes				
RFIC	CNTRL(2:0)			RF	RFIC Control Bus from UPP to RFIC(TACO&SAFARI)							
0	RFBUSCLK	UPP	RFIC	In	Dig	0/1.8V	9.72 MHz	RF Control serial bus bit clock				
1	RFBUSDA	UPP/RFIC	RFIC UPP	1/0	Dig	(0: <0.4V 1: >1.4 V)		Bi-directional RF Control serial bus data,				
2	RFBUSEN1X	UPP	RFIC	In	Dig			RFIC Chip Sel X				
PUSI	.(2:0)			Pov	ver Up	Reset from	UEM to RF IC(TACO&SAFARI)				
0	PURX	UBM	RFIC	Out	Dig	0/1.8V	10us	Power Up Reset for RF IC				
								SLCLK & SLEEPX not used in RF				
GENIO(28:0)							ected to RF, se om UPP GENIC	ee also separate collective GENIO(28:0) Os to RF				
5	TXP1	RFIC	UPP	Out	Dig	0/1.8V	10 us	SAFARI: Low Band Tx enabled				
								TACO: Low Band&High Band enabled				
6	TXP2	RFIC	UPP	Out	Dig	0/1.8V		High Band Tx enabled Only in SAFARI engine.				
11	BANDSEL	RFIC	UPP	Out	Dig	0/1.8V		Rx Band select. Option for module LNA.				
								Only in SAFARI engine.				

Rip #	Signal Name DAMPS, GSM1900	Connected from to		_	BB Signal Properties I/O A/DLevelsFreq./ Timing resolution		elsFreq./	Description / Notes		
RFCL	K (not BUS	: -> no rip :	#)					nal source VCTCXO, buffered (and IC (TACO&SAFARI)		
	RFCLK	VCTCX0 - > RFIC	UPP	In	Ana	800mVpp typ (FET probed) Bias DC blocked at UPP input	19.44 MHz	System Clk from RF to BB,		
	RFCIk GND	RF	UPP	In	Ana	0		System Clock slicer Ref GND, not separated from pwb GND layer		
SLOV	VAD(6:0)			Slow	/ Spec	ed ADC Lines	from RF bloc	:k		
5	PDMID	RF Power detection module	UEM	In	Ana	0/2.7V dig	0/VR2	Power detection module identification to slow ADC (ch 5, previous VCTCXO Temp) signal to UEM.		
6	PATEMP	RF Power detection module	UEM	In	Ana	0.1-2.7V	-	Tx PA Temperature signal to UEM, NTC in Power Detection Module		
RFCC)NV(9:0)		1	RF-I	RF- BB differential Analog Signals: Tx I&Q, Rx I&Q and reference voltage					
0 1	RXIP RXIN	RFIC	UEM	In	Ana	1.4Vpp max. diff. 0.5Vpp typ		Differential positive/negative in-phase Rx Signal		
2	RXQP	1				bias		Diff. Positive/negative quadrature phase Rx		
3	RXQN	1				1.30V		Signal		
4	TXIP	UEM	RFIC	Out	Ana	2.2Vpp		Differential positive/negative in-phase Tx		
5	TXIN					max. diff. 0.6VppTvp		Signal		
6	ΤΧΩΡ					Bias		Differential positive/negative quadrature		
7	ΤΧΩΝ					1.30V		phase Tx Signal		
9	VREFRF01	UEM	RFIC	Out	Vtef	1.35 V		RF IC Reference voltage from UEM		

NOKIA CCS Technical Documentation

Rip #) Signal Name DAMPS, GSM1900	Connected from to			3B /O	Signal Properties A/DLevelsFreq./ Timing resolution		A/DLevelsFreq./		Description / Notes	
RF	AUXCONV(2:	0)		RF_	RF_BB Analog Control Signals to/from UEM						
1	TXPWRDET	TXP Det.	UBM	In	Ana	0.1-2.4 V	50 us	Tx PWR Detector Signal to UEM			
2	AFC	иви	VCTCXO	Out	Ana	0.1-2.4 V		Automatic Frequency Control for VCTCXO			
	1		1			1					

VRF Globals instead of Bus								UEM to RF. Current values are of the asured values of RF
	VR1 A	UEM	RFIC	Out	Vteg	4.75∨ +-3%	10 mA max.	UEM, charge pump + linear regulator output. Supply for UHF synth phase det
	VR1 B	UEM	RFIC	Out	Vteg	4.75∨ +-3%	10 mA max.	UEM, charge pump + linear regulator output. Only in SAFARI engine, not used in TACO engine.
	VR2	UEM	RFDiscr./ RFIC	Out	Vteg	2.78 V +- 3 %	100 mA max.	UEM linear regulator. Supply voltage for Tx IQ filter and IQ to Tx IF mixer.
	VR3	UEM	VCTCXO	Out	Vteg	2.78 V +-3%	20 mA max.	UEM linear regulator. Supply for VCTCXO + RFCLK Buffer in RF IC.
	VR4	UEM	RFIC	Out	Vteg	"	50 mA max.	UEM linear regulator. Power Supply for LNA / RFIC Rx chain.
	VR5	UEM	RFIC	Out	Vteg	"	50 mA max.	UEM linear regulator. Power Supply for RF low band PA driver section.
	VR6	UEM	RFIC	Out	Vteg	"	50 mA max.	UEM linear regulator. Power supply for RF high band PA driver section. Only in SAFARI engine, not used in TACO engine.
	VR7	UEM	RFIC, UHF VCO	Out	Vteg	"	45mA	UEM linear regulator. Power supply for RF Synths
	IPA1	UEM	RF PA	Out	lout	0-5 mA		Settable Bias current for RF PA L-Band
	IPA2	UEM	RFPA	Out	lout	0-5 mA		Settable Bias current for RF PA H-band
	VFLASH1	UEM	RFIC	Out	lout	2.78V	~2mA	UEM linear regulator common for BB. RFIC digital parts and RF to BB digi IF.
VB	VBATT, Global							
	VBATTRF	Batt	RFPA	Out	Volatt	35V	01A	Raw Vbatt for RF PA
		Conn				nom 3.6V	2A peak	

BB Internal Connections

Rip #	Signal Name DAMPS/G SM1900		Connected fromto			A/D-Le	l Properties evelsFreq./ 1_resolution	Description / Notes					
REC	ONVDA(5:0)	×		1.8V I&Q	1.8V digital interface between UPP and UEM. RF Converter CLK, Rx and Tx I&Q data (bit stream signals).								
0	RFCONVCLK	UPP	UEM	In	Dig	0/1.8 ∨	4.86 MHz/ Digi 3.24 MHz /Ana	RF Converter Clock					
1	RXID	UEM	UPP	Out	1			(PDM) RxI Data					
2	RXQD	1						(PDM) RxQ Data					
3	TXID	UPP	UEM	In	1			(PDM) Txl Data					
4	TXQD	1						(PDM) TxQ Data					
5	AUXDA	UPP	UEM	In	1			Auxiliary DAC Data					
							•						
REC	ONVCTRL(2	:0)*		1.8V IF bi	1.8V digital interface between UPP (DSP) and UEM, RF Converter and UEM RF IF <u>bidirectional</u> serial Control Bus, "DBUS",								
0	DBUSCLK	UPP	UEM	In	Dig	0/1.8 V	9.72MHz	Clock for Fast Control to UEM					
1	DBUSDA	1		In/Qu	1			Fast Control Data to/from UEM					
2	DBUSENX			In]			Fast Control Data Load /Enable_to UEM					
AUD	UEMCTRL(S):O)*		1.8V "CBI		al interface	between UPP	(MCU) and UEM, <u>Bidirectional</u> Control Bus					
0	UEMINT	UEM	UPP	Out	Dig	0/1.8 V		UEM Interrupt					
1	CBUSCLK												
		UPP	UEM	In			1.08 MHz	Clock for Control/Audio Convertors in UEM					
2	CBUSDA		UEM	In In/Qu			1.08 MHz 1.08Mbit/s	Clock for Control/Audio Convertors in UEM Control Data					
2 3	CBUSDA CBUSENX	UPP	UEM										
3	1		UEM	In/Qu In 1.8V		al audio inte y CBUSCLI	1.08Mbit/s erface betweer	Control Data					
3	CBUSENX		UEM	In/Qu In 1.8V			1.08Mbit/s erface betweer	Control Data Control Data Load Signal					
3 AUD	CBUSENX)*		In/Qu In 1.8V cloc	keď by	Y CBUSCLI	1.08Mbit/s erface between K	Control Data Control Data Load Signal UPP and UEM audio codec, PDM data PDM Data for Downlink Audio, clocked by					
3 AUD O	CBUSENX)* UPP	UEM	In/Qu In 1.8V cloc	keď by	Y CBUSCLI	1.08Mbit/s erface between K	Control Data Control Data Load Signal UPP and UEM audio codec, PDM data PDM Data for Downlink Audio, clocked by CBUSCLK PDM Data for uplink Audio, clocked by					
3 AUD 0 1	CBUSENX)* UPP	UEM	In Qu In Qu In 1.8V cloc In Out	Dig	y CBUSCLI 0/1.8 ∨ al SIM signa	1.08Mbit/s	Control Data Control Data Load Signal UPP and UEM audio codec, PDM data PDM Data for Downlink Audio, clocked by CBUSCLK PDM Data for uplink Audio, clocked by					
3 AUD 0 1	CBUSENX IODATA(1:0 EARDATA MICDATA)* UPP	UEM	In Qu In Qu In 1.8V cloc In Out	digitz	y CBUSCLI 0/1.8 ∨ al SIM signa	1.08Mbit/s	Control Data Control Data Load Signal UPP and UEM audio codec, PDM data PDM Data for Downlink Audio, clocked by CBUSCLK PDM Data for uplink Audio, clocked by CBUSCLK					
3 AUD 0 1 ISIM	CBUSENX IODATA(1:0 EARDATA MICDATA IIE(2:0)*)* UPP UEM	UEM	In/Qu In/Qu In 1.8V Cloc In Out 1.8V 1X/N	keď by Dig digitz KW-1	y CBUSCLI 0/1.8 ∨ al SIM signa CX	1.08Mbit/s	Control Data Control Data Load Signal DUPP and UEM audio codec, PDM data PDM Data for Downlink Audio, clocked by CBUSCLK PDM Data for uplink Audio, clocked by CBUSCLK PP and UEM, wired, not used in NKW-					

1

Rip #	Signal Name DAMPS, GSM1900	fron	ected 1 to		UEM Signal Properties I/O A/DLevelsFreq Timing resolution		/elsFreq./	Description / Notes
PUSI	L(2:0)*			Pow	er-Up	& Sleep Co	ntrol lines	
0	· · · · · · · · · · · · · · · · · · ·		UPP RFIC	Out	Dig	0/1.8 V		Power Up Reset, 0 at reset
1	SLEEPX	UPP	UEM	In]			Power Save Functions, active low
2	SLEEPCLK	UEM	UPP	Out]		32.768 kHz	32 kHz Sleep Clock
IACCDIF(5:0)*				BB II UEM		al 1.8V Digit:	al Accessory B	uses between UPP and 2.7V level shifter
0	IRTX	UPP	UEM			0/1.8 V	1.152 Mbit/s	
Ŭ		0	02	⁰			max	1/NKW-1C.
1	IRRX	UEM	UPP	In				Infrared Receive
2	MBUSTX	UPP	UEM	In	Dig	0/1.8 V	9k6 b/s	MBUS Transmit
3	MBUSRX	UEM	UPP	Out			9k6 b/s	MBUS Receive / FDL C/k
							<7Mb/s	
4	FBUSTXI	UPP	UEM	In	Dig	0/1.8 V	<115kb/s	FBUS Transmit / FDL Tx
							<1Mb/s	
5	FBUSRXI	UEM	UPP	Out			<115kb/s <7 <i>Mb</i> ∕s	FBUS Receive I FDL Rx

SLO	WAD(6:0)*			SLov	w Spe	ed ADC Lines	UEM external				
0	BSI	BATTE	UEM	In	Ana	0-2.7V	Battery Size Indicator/FDL init				
1	BTEMP	RY					Battery Temperature				
5	PDMid	RF PDMod	UEM	In	Ana	0-2.7V	Power detection module identification to slow ADC (ch 5, previous VCTCXO Temp) signal to UEM.				
6	PATEMP	RF; PDMod NTC					Tx PA Temperature, Measured from Power Detection Module				
RFC	ONV(9:0)*			RF-E	RF- BB Analog Signals: Tx I&Q, Rx I&Q and ref (TACO&SAFARI)						
0	RXIP	RFIC	UEM	In	Ana	1.4Vpp	Differential positive/negative in-phase Rx				
1	RXIN					max. diff. 0.5Vpp typ	Signal				
2	RXQP	1				bias	Diff. Positive/negative quadrature phase Rx				
3	RXQN	1				1.30V	Signal				
4	TXIP	UEM	RFIC	Out	Ana	2.2Vpp	Differential positive/negative in-phase Tx				
5	TXIN	1				max. diff. 0.6VppTyp	Signal				
6	ΤΧΩΡ	1				Bias	Differential positive/negative quadrature				
7	ΤΧΩΝ	1				1.30V	phase Tx Signal				
9	VREFRF01	UEM	RFIC	Out	Vtef	1.35 V	RF IC Reference voltage from UEM				

Rip #	Signal Name DAMPS/G SM1900		Connected from - <u>to</u>		ім О	Signal Properties A/DLevelsFreq./ Timing_resolution		Description / Notes						
REA	UXCONV(2:0)	RF-BB a	uxilia	ry ana	alog Signals	s							
0														
1	TXPWRDET	TXPow. Det. Mod.	UEM	In	Ana	0.1-2.7V		Tx PWR Detector Output to UEM						
2	AFC	UEM	vстсхо	Out	Ana	0.1-2.4∨	11bits	AFC control voltage to VCTCXO, default about 1.3V						
IRIE.	no bus no r	ins	UEM 2.7V signals to IR Module Note: no IR in NKW-1X/NKW-1CX											
,	IRLEDC	IR	Out	Dig	0/2.7V	9k6 -1 M bit/s	IR Tx_signal to IR Module							
	IRRXN		UEM	In	Dig	0/2.7V	9k6 -1 M bit/s	IR Receiver signal from IR Module						
			02.00		·	072.1 7								
	RV lines, no l	hue	LIEM dri	UEM drivers: sinking outputs to Buzzer, <u>Vibra, keyboard LEDs, display LEDs</u>										
UDI	BUZZO		Buzzer Out Dig			350mA 1-5 kHz.		Open_collector sink switch output for						
	00220		Durren		-	max. / Vbatt	EXXMxol	Buzzer. Frequency controlled for pitch, PWM for volume						
	VIBRA	UEM	Vibra	Out	Dig	135mA max / Vbatt	64/128/256/ 512 Hz	Open_collector sink switch/Frequency/ pwm output for buzzer Note: no vibra in NKW-1X/NKW-1CX.						
	DLIGHT	UEM	UI	Out	Dig	100mA / Vbatt	Switch/ 100Hz <u>gwm</u>	Open drain switch/ <u>pwm_output</u> for display light						
	KLIGHT	UEM	UI	Out	Dig	100mA / Vbatt	Switch/ 100Hz <u>pwm</u>	Open drain switch/pwm_output for keylight						
ACC	DIF lines, no	o bus *	Wired D	igital /	Acces	sory Interfa	ace, test patter	n in NKW-1X/NKW1-CX						
	MBUS	UEM	Test Pad 7	In/Ou t	Dig	0/2.7V	9k6bit/s	Mbus bidirectional asynchronous serial data bus/FDL clock, 0-8MHz depends on project						
	FBUSTXO	UEM	Test Pad 2	Out	Dig	0/2.7V	9k6-115kbit/s	Fbus asynchronous serial data output /FDL data out <1Mbit/s						
	FBUSRXO	Test Pad 3	UEM	In	Dig	0/2.7V	9k6-115kbit/s	Fbus asynchronous serial data input/FDL in, 0-8Mb/s depends on project						
RTC	BATT lines,	no bus *	Connec 1X/NKW		ds for	Real Time	Clock back up	battery Note: no back-up battery in NKW-						
	VBACK	UEM	RTCBATT	ln/	Vsup ply/	+2-3.3V		For back up battery Li 6.8x1.4						
	GND	Global G	ND	Out	Chra	0		2.3mAh@3.3∨						

Rip #	Signal Name DAMPS/ GSM1900		ected to	UEM I/O		Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes		
HP										
AUD	IO(4:0)		HP Inter	nal an	alog	ear & micro	phone IF betw	veen UEM and Mic/Ear circuitry		
0	EARP	UEM	Earpiece	Out	Ana	1.25V	Audio	Differential signal to HP internal Earpiece.		
1	EARN	1						Load resistance 32 ohm.		
2	MIC1N	Mic	UEM	In	Ana	100mVpp	Audio	Differential signal from HP internal MIC,		
3	MIC1P	1				max diff.		2mV nominal		
4	MICB1	Mic	UEM	Out	∨ bias	2.1V typ./ ≺600 uA	DC Bias	Bias voltage for internal MIC		
EXI	ERNAL A		TERFAC	E						
XAU	DIO(<mark>9:0</mark>)*		External	Audio	o IF be	etween UEI	M and X-audio) circuitry		
0	HEADINT	SysCon/HS et	UEM	In	Dig	0/2.7V		Input for Headset Connector HeadInt Switch		
1	HF	UEM	SysCon/H Set	Out	Ana	1.0Vpp bias 0.8V	Audio	External Earpiece Audio Signal		
2	HFCM				Ana	0.8 Vdc		Reference output for DC coupled external Earpiece		
3	MICB2	UEM	SysCon / Headse t	Out	V bias	2.1V typ/ 600 uA		Bias voltage for external MIC		
4	MIC2P	SysCon/	SysCon/	SysCon/	UEM	In	Ana	200mVpp	Audio	Differential signal from external MIC
5	MIC2N	Headset				max diff				
6	HOOKINT	Sys Con	UEM	In	Ana/ Digi	02.7V	DC	HS Button interrupt, External Audio Accessory Detect (EAD)		
<u></u>	ARGER int									
	RGER lines,									
	VCHARIN	Charger	UEM	In	Vehr	< 16V < 1.2A	DC	Vch from Charger Connector, max.20V		
	GND				GND	1.40		GND from/to Charger connector		
PWR	ONX *		Power O	n Sig	nal, se	ee also the	UI/keyboard			
	PWRONX	UI	UEM	in	Dig	0/Vbatt		Power button		
	GND				GND			GND for Power button		

Rip #	Signal Name DAMPS/ GSM190 0	Conne from -		UE I/	em O	A/D-Le	Properties velsFreq./ resolution	Description / Notes
VBB,	Globals in	stead of Bu	IS [*]	Regu	ılated	BB Supply	Voltages	
	VANA	UEM		Out	Vreg.	2.78 ∨ +~3 %	80mA max.	Disabled in sleep mode.
	VFLASH1	UEM		Out	Vieg.	2.78 ∨ +~3 %	70mA max.	1.5mA max. in sleep mode. VFLASH1 is always enabled after power on.
	VFLASH2	UEM		Out	Vieg.	2.78 ∨ +~3 %	40mA max.	VFLASH2 is disabled by default.
	VIO	UEM		Out	<u>Vreg</u>	1.8 ∨ +- 4.5 %	150mA max.	1.5mA max. in sleep mode. VIO is always enabled after power on.
	VCORE	UEM		Out	Viteg.	1.0-1.8 ∨ +-5 %	200mA max.	200.uA max. in sleep mode.
	VSIM	UEM	SIM	Out	Vieg	1.80/3.0V	25 <u>mA</u> max.	500 uA max. in sleep mode
								Not used in NKW-1X/NKW-1CX.
	VBACK	UEM	ln t		<u>Vieg</u>	3.0 V		No external use, only for RTC battery charging/discharging
								Not used in NKW-1X/NKW-1CX.

UPP Block Signals

RFCONVDA(5:0)	See UEM / RFC ONVDA(5:0)
RFCONVCTRL(2:0)	See UEM / RFCONVCONTR(2:0)
AUDUEMCTRL(3:0)	See UEM / AUDUEMCTRL(3:0)
AUDIODATA(1:0)	See UEM / AUDIODATA(1:0)
ISIMIF(2:0)	See UEM / ISIMIF(2:0)
PUSL(2:0)	See UEM / PUSL(2:0)
IACCDIF(5:0)	See UEM / IACCDIF(5:0)

RFCLK & GND	See BB_RF IF Conn / RFCLK (not BUS)
RFICCNTRL(2:0)	See BB_RF IF Conn / RFICCNTRL(2:0)
GENIO(28:0)/rips 5 and 6	See BB_RF IF Conn / GENIO(28:0) also Sec 5.2.4

Rip #	Signal Name DAMPS/ GSM1900	Connected from to		UF	эр О	Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes
UPP	Globals, no	bus, no i	rip	Pow	er sup	plies and GN	D	
	VIO	UPP	UEM	In	Vreg	1.8 ∨ +- 4.5 %	20mA max.	UPP I/O power supply
	VCORE	UPP	UEM	In	Vreg	1.0-1.8 V +- 5 %	100mA max.	UPP logics and processors power supply, settable to reach the speed for various clock frequencies.
	GND	UPP	VSSXXX			0		Global GND

Rip #	Signal Name DAMPS/ GSM1900	Connected from to		UF IA	-	A/DLe	Properties velsFreq./ resolution	Description / Notes
MEM	ADDA(23:0))*	External Me	mory Add	Iress	/Data Bus		
0- 15	EXTAdDa UPP 0:15		Memory	In/Ou t	Dig	0-1.8∨	25/150 ns	Burst Flash Address (0:15) & Data (0:15) Direct Mode Address (0:7)
16- 23	EKTAd 16:23	UPP	Memory	Out	Dig	D-1.8∨	25 / 150 ns	Burst Flash Address (16:23) Direct Mode Data (8:15)
MEM	CONT(9:0)	*	External Me	mory Cor	ntrol E	Bus		
0	EctWrX	UPP	Memory	Out	Dig	0-1.8 V		Write Strobe
1	ExtRdX	UPP	Memory	Out	Dig	0-1.8 V		Read Strobe
2	FIs2CSX	UPP	Mernory	Out	Dig	D-1.8∨		2nd Flash Chip Select, not used in NKW- 1/NKW-1C
3	Fisbaax	UPP	Memory	Out	Dig	0-1.8∨		Flash Burst Address Advance Direct Mode Address (16)
4	FISPS	UPP	Memory	In/Ou t	Dig	0-1.8∨	25 ns	Burst Mode Flash Data Invert Direct Mode Address (17)
5	FISAVOX	UPP	Memory	Out	Dig	0-1.8∨		Flash Addr Data Valid/ Latch Burst Addr Direct Mode Address (18)
6	FIsClk	UPP	Memory	Out	Dig	0-1.8∨	50 MHz	Burst Mode Flash Clock Direct Mode Address (19)
7	FISCSX	UPP	Memory	Out	Dig	0-1.8 V		Flash Chip Select
8	FISRDY	UPP	Memory	In	Dig	0-1.8 V		Ready Signal for Flash
9	FISRSTX UPP		Memory	In	Dig	D-1.8∨		Reset Signal for Flash
GEN	IO(28:0)		Memory Wr	ite Protec	t from	n GENIO bu	IS	
23	GENI0(23)	UPP	Memory	Out	Dig	0-1.8 V		Write Protect, 0-active

NOKIA CCS Technical Documentation

Rip #	Signal Name DAMPS, GSM1900	1	nected n to	UF 1/	Р О	A/DL	al Properties .evelsFreq./ ng_resolution	Description / Notes
GEN	O(28:0)		Genera	l VO Pin	is, Th	e bold fo	nt lines are only	y valid one for product.
0	Security bypass	UPP		In	Dig	0-1.8 V	In / Pull Up	R&D only
1	EmuRiesent	UPP		In	Dig	0-1.8 V	In / Pull Up	R&D only
2	GENIO2	UPP		In/Out	Dig	0-1.8 V	in / Pull Up	RF PA identification
3	GENI03	UPP		In/Out	Dig	0-1.8 V	In / Pull Down	RF PA identification
4	LCDRstX	UPP	Display	Out	Dig	0-1.8 V	Out / 0	Display Reset
5	TXP1	UPP	RF	Out	Dig	0-1.8 V	Out / 0	Tx Power Enable (Low Band)
6	ТХР2	UPP	RF	Out	Dig	0-1.8 V	Out / 0	Tx Power Enable (High Band)
7	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
8	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
9	Not Used	UPP	GND	Out	Dig	0-1.8 V	Pull Down	
10	IRModSD	UPP	IR Module	Out	Dig	0-1.8 V	in / Pull Down	IR Module Shut Down Note: Not used in NKW-1X/NKW-1CX.
11	RandSel	UPP	RF/ FMR	Out	Dig	0-1.8 V	In / Pull Up	Lo/Hi Band Selection (DAMPS) / Extended Band, Selection (PDC)
12	ARata	UPP		In/Out	Dig	0-1.8 V	In / Pull Down	
13	IRModuleEIR	UPP	IR / RF	Out	Dig	0-1.8 V	In / Pull Up	Fast IR
14	Not Used	UPP		In	Dig	0-1.8 V	In / Pull Down	
15	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
16	Not Used	UPP		In	Dig	0-1.8 V	In / Pull Up	
17	Not Used	UPP		In	Dig	0-1.8 V	In / Pull Up	
18	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
19	Not Used	UPP	LPRF/RF	In/Out	Dig	0-1.8 V	In / Pull Down	LPRF Data In / Accessory Buffer Enable / PAG ain
20	Not Used	UPP	LPRF	Out	Dig	0-1.8 V	Out/0	LPRF Data Out
21	Not Used	UPP	LPRF	Out	Dig	0-1.8 V	In / Pull Up	LPRF Sync /Accessory Mute
22	Not Used	UPP	LPRF	Out	Dig	0-1.8 V	In / Pull Down	LPRF Interrupt/Accessory Power Up
23 24	FLSWRPX Not Used	UPP UPP	FLASH	Out Out	Dig Dig	0-1.8 V 0-1.8 V	Out / 1 In / Pull Up	Write Protect, 0-active when protected
25	Not Used	UPP		In/Out	Dig	0-1.8 V	In / Pull Up	
26	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
27	Not Used	UPP		In/Out	Dig	0-1.8 V	In / Pull Up	
28	Not Used	UPP		Out	Dig	0-1.8 V	Out/1	
29	Not used	UPP	UEM	In/Qg	Dig	0/1.8 V	Out/0	SIMIODAI
30	Not used	UPP	UEM	In	Dig	0/1.8 V	Out/0	SIMCLKI
31	Not used	UPP	UEM	In	Dig	0/1.8 V	Out/1	SIMIOCTRL

Rip #	Signal Name DAMPS/GS M1900		onnected om to		99 '0	A/D-Leve	roperties elsFreq./ resolution	Description / Notes
KEY	B(10:0) *	Ke	yboard matri	ix				
0	P00	UPP	KEYBOAR D	In	Dig	0/1.8 V		Keyboard Matrix Line S1, Not used
1	P01	UPP	KEYBOA RD	In	Dig	0/1.8 V		Keyboard Matrix Line S1
2	P02]	RU					Keyboard Matrix Line S2
3	P03]						Keyboard Matrix Line S3
4	P04							Keyboard Matrix Line S4
5	P10	UPP	KEYBOA RD	In	Dig	0/1.8 V		Keyboard Matrix Line R0
6	P11							Keyboard Matrix Line R1
7	P12							Keyboard Matrix Line R2
8	P13							Keyboard Matrix Line R3
9	P14							Keyboard Matrix Line R4
10	P15	UPP	KEYBOAR D	In	Dig	0/1.8 V		Keyboard Matrix Line R5, Not used
LCD	Ul lines, no b	us *	Display	& UI S	Serial	Interface		
	LCDCamOk	UPP	DISPLAY	Out	Dig	0/1.8 V	4.86 MHz/	Data clock for LCD serial bus, the speed
							2.43 MHz	may vary according the Display and direction requirements
	LCDCamTxDa			1/Out	Dig		4.86 Mbit/s	Serial Data to/from LCD
						-	/2.43 Mbit/s	
	LCDCSX			Out	Dig			LCD Chip Select
	GENIO(4)			Out	Dig			LCD Reset, 0-active

Rip #	Signal Name DAMPS/ GSM1900	Connected from to		I/O UPP		Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes
DSP_MCUTEST *			Ostrich Test Interface, for R&D use only					
	GENTESTO	UPP	Ostrich Connector	Out	Dig	0/1.8 V		Serial Tx Data to Ostrich Device
	GENTEST1	UPP	Ostrich Connector	Out				Serial Clock to Ostrich Device
	GENTEST2	UPP	Ostrich Connector	In]			Serial Rx Data from Ostrich Device
JTAC	G_EMULATI	ON *	Emulator Interface, for R&D use only					
	JTCLK	UPP	JTAG Connector	In	Dig	0/1.8 V		JTAG Clock
	JTRST	UPP	JTAG Connector	In]			JTAG Reset
	JTDI	UPP	JTAG Connector	In]			JTAG Data In
	JTMS	UPP	JTAG Connector	In	1			JTAG Mode Select
	JTDO	UPP	JTAG Connector	Out	1			JTAG Data Out
	BMUO	UPP	JTAG Connector	1/0	1			Emulation Control
	BMU1	UPP	JTAG Connector	1/0]			Emulation Control

Memory Block Interfaces

Rip #	Signal Name DAMPS/ GSM1900		Connected from to				lsFreq./	Description / Notes			
MEMADDA(23:0)					External Memory Addr/Data Bus						
0- 15	EXTADD A 0:15	Memory	UPP	In/Ou	Dig	0/1.8 V	25 / 150 ns	Burst Flash Address (0:15) & Data (0:15) Direct Mode Address (0:7)			
16- 23	EXTAD 16:23	Memory	UPP	In	Dig	0/1.8 V	25/150 ns	Burst Flash Address (16:23) Direct Mode Data (8:15)			
MEM	CONT(8:0)			Exte	rnal N	lemory Contr	ol Bus	•			
0	ExtWrX	Memory _WE	UPP	In	Dig	0/1.8 V		Write Strobe			
1	ExtRdX	Memory _OE	UPP	In				Read Strobe			
2					1						
3	(FIsBAAX) VPPCTRL	Memory (VPP)	UPP	In				VPP=1.8V ,=> VIO used internally for VPP VPP=5/12V, VPP used			
4	FISPS	Memory PS	UPP	In/ Out			25 ns	Burst Mode Flash Data Invert Direct Mode Address (17)			
5	FISAVDX	Memory _AVD	UPP	In				Flash Addr Data Valid/ Latch Burst Addr Direct Mode Address (18)			
6	FISCLK	Memory CLK	UPP	In			50 MHz	Burst Mode Flash Clock Direct Mode Address (19)			
7	FISCSX	Memory _CE	UPP	In				Flash Chip Select			
8	FISRDY	Memory RDY	UPP	Out				Ready Signal for Flash			
9	FISRSTX	Memory _RP	UPP	Out				Flash reset, 0 active, (FLSRPX)			
GEN	IO(28:0)			Gene	eral I/() D Pin used fo	r extra contro	DI			
23	FLSWRPX	Memory _WP	UPP	Out	Dig	0/1.8 V	0	Write Protect, 0-active protected			
Glob	als			Power supplies and production test				pad			
	VIO	UEM	FLASH	In	PWR	1.8 V		FLASH power supply			
	VPP	Prod TP 6	FLASH	In	Vpp	0/(1.8) /5/12V		FLASH Programming/erasing voltage/control. 5 or 12 V external voltage for high speed programming			
	GND							Global GND			

Audio Interfaces

Rip #	Signal Name DAMPS/ GSM1900	Connected from to		AUDIO I/O		Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes		
HP I	INTERNAL	AUDIO								
AUDI	O(4:0) *		HP Inter	nal mi	icropł	none and ea	rpiece IF betw	een UEM and Mic/Ear circuitry		
0	EARP	UEM	Earpiece	Out	Ana	1.25V	Audio	Differential signal to HP internal Earpiece.		
1	EARN	1						Load resistance 32 ohm.		
2	MIC1N	Mic	UEM	In	Ana	100mVpp	Audio, AC	Differential signal from HP internal MIC		
3	MIC1P]				max diff.	coupled to UEM			
4	MICB1	Mic	UEM	Out	V bias	2.1V typ./ ≤600 uA		Bias voltage for internal MIC		
Botto	om Connecto	ſ	HP Internal microphone IF between Bottom connector and Mic/Ear of					connector and Mic/Ear circuitry		
	MIC+	Mic	Audio -	In	Ana	2mV nom	Audio	Mic bias and audio signal. Microphone		
			UEM	Out	Bias	2V2kohm	DC bias	mounted into bottom connector		
	MIC-]		In	GND	0 (GND)		AGND coupled to GND at UEM		
Earpi	iece Connect	tor Pads	HP Internal IF between Earpiece and Mic/Ear circuitry							
	"1"~EARP	EAR	Audio - UEM-	Out	Ana	1.25V	Diff DC coupled	Differential audio signal to earpice 32 ohm		
	"2"~EARN		EAR P/N				Audio			

NOKIA CCS Technical Documentation

Rip #	Signal Name DAMPS/ GSM1900	Name from to A/DLevelsFreq./ DAMPS/ I/O Timing resolution		Description / Notes						
EXT	ERNAL A	UDIO IN	TERFAC	СE						
XAU	010(<mark>9:0</mark>)*		External	External Audio IF between UEM and X-audio circuitry						
0	HEADINT	SysCon/HS et	UEM	Out	Dig	0/2.7V		Output to UEM for Headset Connector "HeadInt" Switch		
1	HF	UEM	SysCon/H Set	In	Ana	1.0Vpp bias 0.8V	Audio	External Earpiece Audio Signal		
2	HFCM				Ana	0.8 Vdc	1	Reference for DC coupled external Earpiece		
3	MICB2	UEM	SysCon / Headse t	Out	V bias	2.1V typ/ 600 uA		Bias voltage for external MIC		
4	MIC2P	SysCon/	UEM	Out	Ana	200mVpp	Audio	Differential signal from external MIC		
5	MIC2N	Headset				max diff				
6	HOOKINT	Sys Con	UEM	Out	Ana/ Digi	02.7∨	DC	HS Button interrupt, External Audio Accessory Detect (EAD)		
Botto	om Connecto	ог	HP Internal microphone IF between Bottom c					onnector and Mic/Ear circuitry		
	XMICP	(MICP HS/HF Mic		In	Ana	2/60mV nom diff	Audio	Headset Mic bias and audio signal 2mV nominal. HF Mic signal 60mV nominal.		
				Out	Bias	2.1V bias/ 1kohm	DC bias	Differential symmetric input. Accessory detection by bias loadind (EAD		
						rkonm		channel of slow ADC of UEM)		
								Hook interrupt by heavy bias loading		
	XMICN			In	Ana	2/60mV nom diff GND/ 1 kohm	Audio	Mic - connected to GND trough lower part of splitted symmetric load resistor (2 x 1 kohm)		
	XEARP XEARN	HS/HF EAR/ Amp.	Audio - UEM	In	Ana	100 mV nom diff	Audio	Quasi differential DC-coupled earpiece/HF amplifier signal to accessory. DC biased to 0.8V; XEARN a quiet reference although have signal when loaded due to internal series resistor.		
-	INT	Switch	Audio - UEM	In	Dig	0/2.7∨		HS interrupt from bottom connector switch when plug inserted		

Key/Display blocks

Keyboard Interface

Rip #	Signal Name DAMPS/G SM1900	Connected from to			EY Signal Properties A/DLevelsFreq./ Timing resolution		lsFreq./	Description / Notes
KEYI	B(10:0)		Keybo	ard m	atrix,	Roller key		
0	P00	Not used	UPP	Out	Dig	0/1.8 V		
1	P01	Key Board						Key Board Matrix Line
2	P02	Key Board]					Keyboard Matrix Line
3	P03	Key Board						Keyboard Matrix Line
4	P04	Key Board	1					Keyboard Matrix Line
5	P10	Key Board	1					Keyboard Matrix Line
6	P11	Key Board	1					Keyboard Matrix Line
7	P12	Key Board	1					Keyboard Matrix Line
8	P13	Key Board	1					Keyboard Matrix Line
9	P14	Key Board	1					Keyboard Matrix Line
10	P15	Not used						
PWR_KEY			Powe	Key,	not a	member of th	e keyboard	matrix
	PWR_KEY	Power key	UEM	Out	Dig	0A/batt		Power Key, not a member of the keyboard matrix

Display Interface

Rip #	Signal Name DAMPS/G SM1900	Connected from to				Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes	
LCDUI(2:0)			Display & UI Serial Interface						
0	LCDCAMCLK	UPP	Displ.	In	Dig	0/1.8 V	1 MHz	Clock to LCD	
1	LCDCAMTXD A	UPP	Displ.	ln/ Out	Dig	0/1.8 V	1 MHz	Data to/from LCD	
2	LCDCSX	UPP	Displ.	In	Dig	0/1.8 V		LCD Chip Select	
GENIO(28:0) Gener			General	I/O Pii	ns	-	-		
4	LCDRstX	UPP	Display	Out	Dig	0/1.8 V	Out / D	Display Reset, 0-active	

RF Module

Requirements

The RH-42 RF module supports the following systems:

- AMPS
- TDMA 800

The minimum transceiver performance requirements are described in TIA/EIA-136-270. The RH-42 RF must follow the requirements in the revision A. The EMC requirements are set by FCC 47CFR 15.107 (conducted emissions), 15.109 (radiated emissions, idle mode), and 22.917 (radiated emissions, call mode).

Design

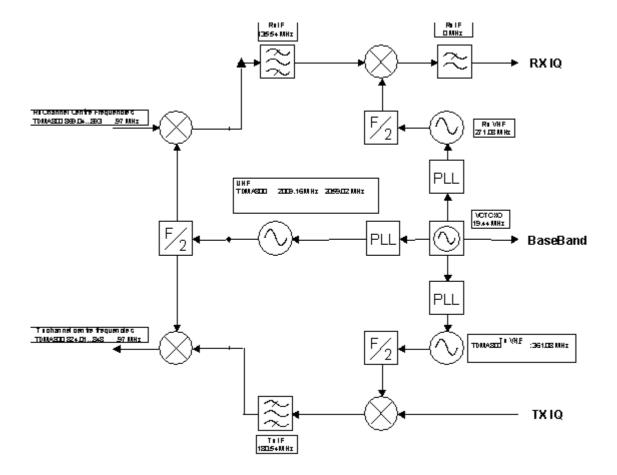
The RF design is centered around the Taco RF-IC. Taco consists of receivers, transmitter IF

parts, highband TX upconverter, lowband TX upconverter, and all PLLs, lowband LNA, TX VHF VCO active part, and loopfilter.

RF filtering, 2G LNA, power amplifiers, and TX power detection circuitry are left outside Taco.

The phone comprises of one single-sided, six-layer PWB. A single multiwall RF shield is used and this sets the maximum component height to 2.0 mm. An internal antenna is located on the top of the phone and there is room for a 4.0 mm high ceramic duplexer under the antenna assembly.

Software Compensations


The following software compensations are required:

- Power levels temperature compensation
- Power levels channel compensation
- Power level reduction due to low battery Voltage
- TX Power Up/Down Ramps
- PA's bias reference currents vs. power, temp and operation mode
- RX IQ DC offsets
- RSSI channel compensation

Main Technical Characteristics

RF Frequency Plan

The RH-42 frequency plan is shown in the following figure. A 19.44 MHz VCTCXO is used for UHF and VHF PLLs and as a baseband clock signal. All RF locals are generated in PLLs.

Figure 11: RF Frequency Block Plan

Due to the AMPS mode, simultaneous reception and transmission, TX and RX IF frequencies are exactly 45 MHz apart. RXIF is 135.54 MHz and TXIF is 180.54 MHz. The RXIF frequency is set so that it is not a multiple of either of VHF's comparison frequency (120k). In digital mode (TDMA800), RXIF frequency is 135.54 MHz and TXIF is (180.54MHz).

DC Characteristics

Power Distribution Diagram

Note: The current values in the following figure are not absolute values and cannot be measured. These values represent maximum/typical currents drawn by the corresponding RF or Taco blocks in use, and are, therefore, dependent on the phone's operating mode and state.

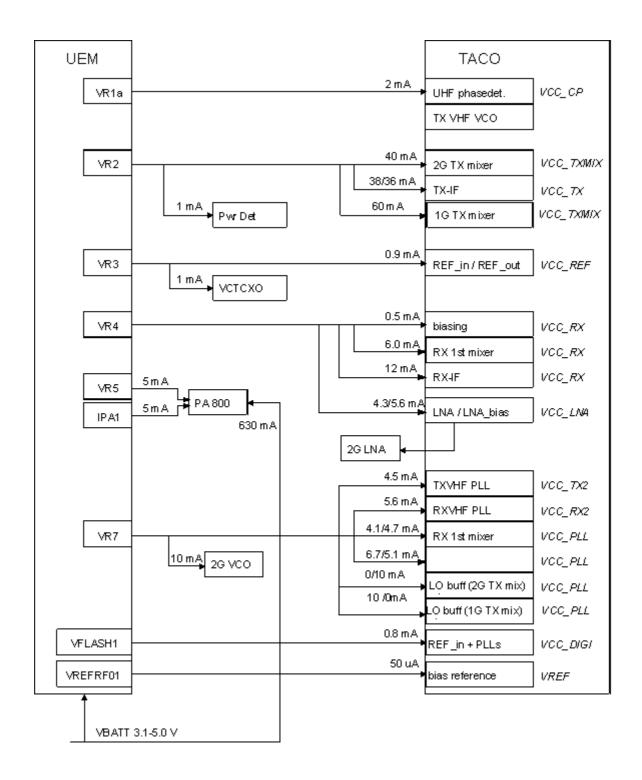


Figure 12: Power distribution

Regulators

The regulator circuit is the UEM and the specifications are found in the following table:

Regulator name	Output voltage (V)	Regulator Max. current (mA)	RF total 1 GHz	RF total 2 GHz
VR1 a/b	4.75 ± 3%	10	4	4
VR2	2.78 ± 3%	100	100	76
VR3	2.78 ± 3%	20	2	2
VR4	2.78 ± 3%	50	23	24
VR5	2.78 ± 3%	50	5	5
VR6	2.78 ± 3%	50	5	5
VR7	2.78 ± 3%	45	40	45
IPA1, IPA2	2.7 max.	$ \begin{array}{r} 1 \pm 10\% \\ 3 \pm 4\% \\ 3.5 \pm 4\% \\ 5 \pm 3\% \end{array} $	1.3 – 5.0	1.3 – 3.7
VREFRF01	1.35 ± 0.5%	0.12	0.05	0.05
VFLASH1	2.78 ± 3%	70	1	1

Receiver

The receiver shows a superheterodyne structure with zero 2nd IF. Lowband and highband receivers have separate frontends from the diplexer to the first IF. The only functions out of the chip are duplexer and SAW filters.

An active 1st downconverter sets naturally high gain requirements for preceding stages. Hence, losses in very selective frontend filters are minimized down to the limits set by filter technologies used and component sizes. LNA gain is set up to 16dB, which is close to the maximum available stable gain from a single stage amplifier. LNAs are not exactly noise matched in order to keep passband gain ripple in minimum. Filters have relative tight stopband requirements, which are not all set by the system requirements but the interference free operation in the field. In this receiver structure, linearity lies heavily on mixer design. The 2nd order distortion requirements of the mixer are set by the 'half IF' suppression. A fully balanced mixer topology is required. Additionally, the receiver 3rd order IIP tends to depend on active mixer IIP3 linearity due to pretty high LNA gain.

IF stages include a narrowband SAW filter on the 1st IF and a integrated lowpass filtering on zero IF. SAW filter guarantees 14dBc attenuation at alternating channels, which gives acceptable receiver IMD performance with only moderate VHF local phase noise performance. The local signal's partition to receiver selectivity and IMD depends then mainly on the spectral purity of the 1st local. Zero 2nd IF stages include most of receivers signal gain, AGC control range and channel filtering.

ITEM	NMP Requirement
	TDMA, AMPS 800
RX frequency range, DAMPS 800	869.01 893.97
LO frequency range	2009.1 2059.2
1st IF frequency	135.54
Channel NBW, RF	28.6
IF 1 3dB roll off min. frequency (+-?f)	13
2nd IF min. 3dB bandwidth	16 / IQ-branch
Max total group delay at 3dB bandwidth	
C/N for sensitivity, digital analog	7 3.5
C/I for selectivity, digital analog	8 4
Sensitivity, digital mode static ch (BER < 3%) ANALOG MODE (sinad >12dB)	-110 (min.) -116 (min.)
Adjacent channel selectivity, digital analog	13 16*
Alternate channel selectivity, digital analog	45 65*
IMD attentuation selectivity, digital analog close spaced (60/120) analog wide spaced (330/660)	65 65* 70*
Cascaded NF, digital analog	< 9.5 < 9.5
Cascaded IIP 3, digital 120/240, 240/480 kHz analog 60/120 kHz analog 330/660 kHz	> -7.7 > -17* > -8*
Available receiver gain digital/analog	85 (min.)
RF front end gain control range, AGC 1 step	20
1st IF gain control range, AGC 2 step	30
R X 2nd IF gain control range, 8x6dB steps	42
Min signal level at RX-ADC input @ sensitivity digital analog	-31 -25
Input dynamic range	-11620

ITEM	NMP Requirement
Gain relative accuracy in receiving band **	2
Gain absolute accuracy in receiving band **	4
* referenced to the sensitivity level ** After production alignment	

AMPS/TDMA 800 MHz Front End

Typical values.

Parameter	MIN	ТҮР	MAX	Unit/Notes
Diplexer input loss	0.35	0.4	0.45	dB
Duplexer input loss	2.5	3	4.1	dB
LNA gain: High gain mode Low gain mode	16 -4.5	16.5 -4	17.3 -3.8	dB dB
LNA noise figure*	1.4	1.7	2.3	dB
LNA 3rd order intercept (IIP3)*	-4	-3	-1.5	dBm
Bandfilter input loss	1.5	2	2.5	dB
Mixer gain*	6	7.5	8	dB
Mixer NF*	8	9	10.5	dB
Mixer IIP3*	4	4.5	5	dBm
Total:				
Gain	18.2	18.6	20	dB
Noise Figure	4.6	5.5	7	dB
3rd order intercept (IIP3)	-8.9	-7.5	-6.8	dBm
*see Taco spec/measurements				

Frequency Synthesizers

RH-42 synthesizer consists of three synthesizers: one UHF synthesizer and two VHF synthesizers. UHF synthesizer is based on integrated PLL and external UHF VCO, loop filter, and VCTCXO. Its main goal is to achieve the channel selection. Due to the RX and TX architecture, this UHF synthesizer is used for down-conversion of the received signal and for final up-conversion in transmitter. A common 2 GHz UHFVCO module is used for operation on 800 MHZ band. Frequency divider by two is integrated in Taco.

Two VHF synthesizers consist of: RX VHF Synthesizer, includes integrated PLL and EXTER-NAL, Loop Filter, and resonator. The output of RX-VHF PLL is used as LO signal for the second mixer in receiver. TX VHF Synthesizer includes integrated PLL and external amplifier, loop filter, and resonator. The output of TX-VHF PLL is used as a LO signal for the IQmodulator of the transmitter. See depicted block diagrams and synthesizer characteristics from synthesizer specification document [6].

Transmitter

The transmitter RF architecture is up-conversion type (desired RF spectrum is low side injection) with (RF) modulation and gain control at IF. The IF frequency is band-related being 180.54 MHz at cellular band. The cellular band is 824.01 MHz – 848.97 MHz.

Common IF

The RF modulator is integrated with Programmable Gain Amplifier (PGA) and IF output buffer inside Taco_T RFIC-chip. I- and Q-signals, that are output signals from BB-side SW IQ-modulator, have some filtering inside Taco before RF modulation is performed. The required LO-signal from TXVCO is buffered with phase sifting in Taco. After modula-tion ($\pi/4$ DQPSK or FM), the modulated IF signal is amplified in PGA.

Cellular Band

At operation in cellular band the IF signal is buffered at IF output stage that is enabled by TXP1 TX control. The maximum linear (balanced) IF signal level to 50Ω load is about -8 dBm.

For proper AMPS mode receiver (duplex) sensitivity, IF signal is filtered in strip filter before up-conversion. The up-converter mixer is actually a mixer with LO and output driver being able to deliver about +6dBm linear output power. Note, that in this point, term linear means –33dB ACP. The required LO power is about –6dBm. The LO signal is fed from Taco.

Before power amplifier RF signal is filter in band filter. The typical insertion loss is about -2.7dB, and maximum less than -3.5dB. Input and output return losses are about -10dB.

Power amplifier is $50\Omega/50\Omega$ module. It does not have own enable/disable control signal, but it can be enabled by bias voltage and reference bias current signals. The gain window is +27 to +31dB and linear output power is +30dBm (typical condition) with -28dB ACP. The nominal efficiency is 50%.

Power Control

For power monitoring, there is a power detector module (PDM) build up from a (dual) coupler, a biased diode detector, and an NTC resistor. RF signals are routed via this PDM. The RF isolation between couplers is sufficient not to lose filtering performance given by duplex filters.

The diode output voltage and NTC voltage are routed to BB A/D converters for power control purposes. The TX AGC SW takes samples from diode output voltage and compares that value to target value, and adjust BB I-and Q-signal amplitude and/or Taco PGA settings to keep power control in balance.

NTC voltage is used for diode temperature compensation and for thermal shutdown when radio board's temperature exceeds $+85^{\circ}$ C.

False TX indication is based on detected power measurement when carrier is not on.

The insertion loss of coupler is -0.42dB (max) at cellular band. Typical values for insertion losses are about -0.2dB. The filtering performance of diplexer is taken in account in system calculations.

Antenna Circuit

Here the antenna circuit stands for duplex filters and the diplexer. The cellular band duplex filter is band pass type SAW filter with typical insertion loss about -2.0dB. Insertion loss of diplexer is -0.45dB (at maximum) for cellular, with typical value being about -0.30dB.

RF Performance

The output power tuning target for power level 2 after diplexer (or after switch for external RF) is +27.3dBm for digital modes and +24.0 dBm for analog mode. See the following table. Modulation accuracy and ACP will be within limits specified in IS-136/137.

Power Level	PGA	Pout		
		TDMA800	AMPS	
2	3	27.3	24.0	
3	4	23.3	21.0	
4	5	19.3	17.5	
5	6	15.3	13.5	
6	7	11.3	9.5	
7	8	7.3	5.5	
8	9	3.3	-	
9	10	-0.7	-	
	11			
10		-4.7		

Antenna

The RH-42 antenna solution is an internal, dual-resonance PIFA. This antenna has a common feeding point for both antenna radiators, which results in the need for a diplexer.